С помощью каких методов определяется сила мышц. Показатели физической деятельности мышц

Динамометрия – методика измерения силы отдельной мышцы или группы мышц при помощи специальных приборов – динамометров.

Кистевая динамометрия

Кистевая динамометрия – измерение силы мышц-сгибателей пальцев. Динамометрия кисти выглядит как одномоментное максимальное воздействие на прибор мышечных волокон. При разогнутом предплечье исследуемый сжимает ручной динамометр одной кистью. Исследование проводится для обеих конечностей, после чего производится сравнение полученных данных. При помощи реверсивного прибора проводят исследование также для разгибателей предплечья, сгибателей бедра и голени.

Становая динамометрия и динамография

Становая динамометрия – измерение силы мышечных групп, выпрямляющих туловище. Нижняя планка станового динамометра должна быть зафиксирована под ступнями испытуемого. Исследуемый обхватывает верхнюю планку кистями рук и тянет вверх. При этом он пытается выпрямиться при разогнутых в коленях нижних конечностях.

Помимо становых, реверсивных и ручных пружинных динамометров существуют ртутные приборы, в которых мышечная сила определяется как уровнем давления на датчик при помощи ртутного манометра.

Динамография – вид исследования, который позволяет регистрировать мышечные сокращения в виде серии кривых на графике. Этот метод показывает длительное мышечное усилие мышцы или группы мышц в динамике. Динамография используется в курортологии, неврологии.


Выражаются показатели динамометрии абсолютными величинами или относительными (по отношению к чему-либо, к массе, например). Данные измерения учитываются антропометрией, в физиологии, в гигиене спорта и спортивной медицине. Также полученные результаты используют для оценки степени физического развития человека.

Оценка результатов

Разработаны различные шкалы оценки показателей динамометрии. Существуют усредненные величины результатов динамометрии, которые принимаются за норму. Они различаются в зависимости от роста, пола и возрастной категории испытуемого. Однако следует учитывать и другие индивидуальные особенности пациента.


Одними из основных показателей физического развития у детей, начиная с возраста восьми лет и до восемнадцати, являются становая сила и сила правой кисти, выраженные в килограммах. В неврологии могут использоваться и измерения других групп мышц при необходимости таковых. Чаще всего исследования выполняются при неврологических заболеваниях, сопровождающихся мышечной слабостью (миастении, парезы после инсульта, оценка эффективности лечения рассеянного склероза со слабостью конечностей и т.д.).

Динамометрия у детей различного пола и возраста дает разные результаты, несмотря на одинаковую методику проведения. Измерение проводится два раза, через небольшую паузу для отдыха.

Возрастные показатели и норма динамометрии

Так, нормы показателей силы правой кисти у мальчиков:
- от 8 до 11 лет варьируются от 13,0 до 18, 5 кг;
- от 12 до 15 лет – от 21, 6 до 37,6 кг;
- от 16 до 19 лет – от 45,9 до 51,0 кг.

Для девочек эти нормы имеют гораздо меньшие значения:
- от 8 до 11 лет соответственно норма от 9,8 до 17,1 кг;
- от 12 до 15 лет норма равна от 19,9 до 28, 3;
- от 16 до 19 лет – от 31, 3 до 33,8 кг.

Удельная сила мышц, скелетных и гладких (в расчете на 1 см 2 площади поперечного сечения), почти одинакова и, в среднем, составляет 4-3 кг/см 2 или 40-30 Н/см 2 .

Сила есть способность преодолевать внешнее сопротивление или противодействовать ему за счёт мышечного сокращения или напряжения.

В физиологии принято выделять следующие виды силы :

1. Максимальная сила (МС);

2. Максимальная произвольная сила (МПС);

3. Относительная сила (ОС) – это МС делённая на анатомический поперечник (перпендикулярно длиннику мышцы) мышцы (S) или массу тела (P): ОС = МС / S (P) кг/см 2 ;

4. Абсолютная сила (АС) – это МС делённая на физиологический поперечник (сумма поперечных сечений всех её волокон) мышцы S’’:

АС=МС/ S’’

Мышцы (по А.А. Ухтомскому) имеют следующие типы строения:

Мышцы с параллельным ходом волокон (портняжная мышца);

Мышцы с веретенообразным ходом волокон (бицепс);

Мышцы с перистым расположением волокон (жевательная, трапецивыдная, межреберные мышцы).

Так абсолютная сила портняжной мышцы 6,24 кг/см 2 , двуглавой мышцы плеча 8,1 кг/см 2 , жевательной 10 кг/см 2 .

Максимальную силу возможно определить лишь при следующих условиях:

1. одновременная активация всех двигательных единиц, входящих в данную мышцу,

2. режим полного тетануса всех ДЕ,

3. сокращение мышцы при длине покоя (изометрический режим),

4. наличие электростимуляции.

Максимальная произвольная сила – это суммарная величина изометрического напряжения группы мышц при максимальном произвольном усилии испытуемого.

Разница между показателями МС и МПС называется силовой дефицит (СД): СД=МС-МПС.

Силовой дефицит – это интегральный показатель степени координационных способностей нервно-мышечного аппарата.

Силовой дефицит зависит от:

1. эмоционального (психологического) состояния человека (его настрой);

2. числа активных ДЕ (особенно больших);

3. совершенствования управления двигательными единицами центральной нервной системой.

Величина максимального мышечного напряжения зависит от следующих факторов:

А – Периферические (структурные, внутримышечные) факторы:

Количество мышечных волокон в мышце,

Величина двигательных единиц, степень рекрутирования (вовлечения в сокращение) мышечных волокон.

3. длина мышечных волокон (Существует некоторая средняя длина Л 0 (это длина мышцы при покое в условиях целостного организма), при которой мышца развивает максимальное сокращение. Если длина будет меньше Л 0 , или, наоборот, больше Л 0 (перерастянута), то сила, развиваемая мышцей в момент ее возбуждения, будет значительно меньше. Оказалось, что максималь­ная сила развивается мышцей в том случае, когда длина саркомера составляет 2,2-2,5 мкм. Зависимость силы мышцы от ее длины очень важна - особенно для сердечной мышцы (закон Франка-Старлинга) в практическом и теоретическом отношениях (она доказывает гипотезу скольжения протофибрилл, объясняющую механизм сокращения);



4. тип строения мышцы (степень наклона мышечных волокон к оси движения – физиологический поперечник мышцы),

5. композиция мышцы (из каких волокон состоит – белых гликолитических или красных оксидативных),

6. функциональные (энергетические – содержание химических потенциалов АТФ, КрФ, гликоген, миоглобин и сократительных белков).

Б – Центральные факторы:

Факторы внутримышечной координации (частота и характер нервных импульсов в ДЕ.

В 1885 г. Н.Е. Введенский ввел понятие оптимума и пессимума частоты и силы раздражения, т.е. зависимости амплитуды ответной реакции мышцы от частоты и силы раздражения. Например, импульсы с частотой 30 Гц (30 имп/с) вызывают тетанус высотой 10 мм миографической записи, 50 Гц – 15 мм, 200 Гц – 3 мм. В этом примере 50 Гц - оптимальная частота (оптимум), 200 Гц – пессимальная частота (пессимум). Таким образом, меняя частоту посылки импульсов к мышечным волокнам, альфа-мотонейрон может регулировать величину сократительного ответа своего мышечного аппарата.

К факторам внутримышечной координации также относится регуляция числа активных, возбуждаемых в данный момент времени ДЕ (Хенеманн). Так, если мышца представлена 10 ДЕ, а в данный момент активна 1ДБ, то мышца способна развить силу, равную 1/10 от ее максимальной силы. Если 5 ДЕ активны, то соответственно, мышца развивает 50% от мак­симума и т. д., а 100% силы она разовьет в том случае, если все 10 ДЕ одновременно будут возбуждены.



2. Режим сократительной деятельности (от одиночного до полного тетануса).

Синхронизация работы ДЕ.

Так, если все 10 ДЕ начнут одновременно возбуждаться, то сила будет, например, 4 кгс/см 2 , а если они возбуждаются асинхронно, то максимальная сила составит 3 кгс/см 2 .

4. Факторы межмышечной координации (мобилизация агонистов, торможение антагонистов, адаптационно-трофические влияния симпатической нервной системы (феномен Орбели-Генецинского).

5. Гормональные влияния (гормоны с анаболическим эффектом: половые, гормон роста и др.)

Факторы, влияющие на величину силы мышцы:

1) длина мышцы: длинные мышцы сокращаются на большую
величину, чем короткие (укорочение мышцы происходит на 1/3, иногда на

2) количество мышечных волокон (чем большее количество волокон
входит в состав мышцы, тем больше ее сила);

3) толщина мышечных волокон (толстые волокна развивают
большее напряжение, чем тонкие);

4) направления волокон, составляющих мышцу (с косыми волокнами
сила мышцы больше, т.к. у них больше физиологическое поперечное
сечение, большая подъемная сила);

    исходная длина мышцы (эффективнее работает мышца после ее умеренного растяжения);

    величина площади прикрепления мышцы (чем больше площадь прикрепления, тем большую силу может развить мышца);

54 1) плечо силы (чем больше плечо силы мышечной тяги, тем

больше сила мышцы);

8) иннервация (чем большее количество мотонейронов,

иннервирующих данную мышцу, возбуждено, тем больше двигательных

единиц приведено в действие, тем больше величина напряжения или

сокращения мышцы; при учащении нервных импульсов, приходящих к

мышце, ее сократительная сила возрастает).

Различают абсолютную и относительную силу мышц.

Относительная сила мышцы - это отношение ее максимальной силы к анатомическому поперечнику (площади поперечного сечения мышцы, проведенного перпендикулярно ее длине).

Абсолютная сила мышцы - это отношение ее максимальной силы к физиологическому поперечнику (сумме площадей поперечных сечений всех мышечных волокон, образующих мышцу). Рисунок 1.

Рис. 1. Схема анатомического (сплошная линия) и физиологического (прерывистая

линия) поперечников мышц различной формы: / - лентовидная мышца, // - веретенообразная мышца, /// - одноперистая мышца

Для характеристики сократительной способности большое значение

имеет определение абсолютной силы мышцы. Необходимо иметь в виду,

что физиологический поперечник (т.е. площадь поперечного сечения всех

волокон мышцы в целом) часто не совпадает с анатомическим

поперечником (т.е. площадью поперечного сечения мышцы). Это

Статическая

это работа, при которой

мышечные волокна

развивают напряжение,

но практически не

укорачиваются; движения

тела или его частей не

происходит.

1) удерживающая

работа при выполнении данной

работы видимого

действия не наблюдается,

но мышца сокращена;

происходит

уравновешивание

действия сопротивления,

моменты силы тяги

55
совпадение есть только у параллельноволокнистых и

веретенообразных мышц, построенных из длинных мышечных волокон. У

перистых мышц, по типу которых постороено большинство скелетных

мышц человека, физиологический поперечник несколько больше

анатомического. Благодаря этому перистые мышцы являются более

сильными, чем параллельноволокнистые или веретенообразные.

Абсолютная сила мышц человека выражается в среднем следующими

величинами (в килограммах на 1 см 2): икроножная + камбаловидная -

6,24; разгибатели шеи - 9,0; жевательные - 10,0; двуглавая плеча - 11,4;

плечевая - 12,1; трехглавая плеча - 16,8.

Между силой и скоростью сокращения мышцы существует

определенное соотношение: чем выше сила, развиваемая мышцей, тем

меньше скорость ее сокращения, и наоборот, с нарастанием скорости

сокращения падает величина усилия (соотношение сила - скорость, по А.

2. Понятие о мышцах - антагонистах и мышцах-синергистах. Виды работы мышц

Выполнение любого двигательного акта представляет собой результат содружественного действия ряда отдельных мышц, так как на любой сустав действует не одна, а несколько мышц. В функциональном отношении в зависимости от направления усилий, развиваемых теми или иными мышцами, их принято делить на синергисты и антагонисты.

Под синергистами понимают такие мышцы, которые образуют содружественно работающие комплексы, обуславливающие возможность выполнения определенного движения. Например, мышцы живота, работая содружественно, осуществляют наклон туловища.

Отдельные мышцы или группы мышц, участвующие в различных движениях, противоположно направленных, принято называть антагонистами. Например, группа мышц, которая сгибает стопу, является

56 антагонистом по отношению к той группе, которая ее разгибает, т.е.

мышцы, расположенные на задней и на передней поверхностях голени, -

антагонисты.

Деление это условно, т.к. при определенных условиях мышцы-антагонисты могут работать как синергисты. Так, мышцы-сгибатели и мышцы-разгибатели туловища, работая совместно, осуществляют наклон туловища в сторону, т.е. работают как синергисты. Согласованная работа мышц-антагонистов и мыпщ-синергистов обеспечивает плавность движений и предотвращает травмы.

В спортивной практике мышцы выполняют различные виды работ. В одних случаях работа приводит к движению, в других - к удержанию позы, фиксации какого-то положения.

Виды работы мышц

Динамическая

это работа, при которой мышечные волокна

укорачиваются или удлиняются, и происходит

перемещение груза и движение костей в суставах.

^преодолевающая работа

мышцей какого-либо

сопротивления или силы

тяжести данного звена

тела, когда момент силы

тяги мышцы (группы

мышц) больше момента

силы тяжести.



57

Например: на ладонь положили груз, который удерживается на вытянутой руке - это работа удерживающая. Если ладонь с грузом поднимается вверх, то это работа - преодолевающая, если ладонь под действием силы тяжести пошла вниз - уступающая работа.

3. Работа мышц по принципу рычага

Мышцы, сокращаясь, приводят в движение кости и действуют при этом как рычаги.

Рычаг - это всякое твердое тело, закрепленное в одной точке, вокруг которой происходит движение.

Обязательными элементами рычага являются:

    точка опоры;

    точка приложения силы;

    плечо рычага - это расстояние от точки опоры до точки приложения силы;

    плечо силы - это кратчайшее расстояние от точки опоры до линии действия силы (рис. 2).

Рис.2. Схема рычага. Плечи рычага (ОА и ОБ), плечи сил (ОА1 и ОБ1).

Если сила тяжести действует под прямым углом, то плечо силы и плечо рычага совпадают по величине.

Если речь идет о двигательном аппарате человека, то таким твердым телом является кость. Точкой опоры, вокруг которой происходят движения, является сустав. Само движение происходит за счет силы тяги мышц.

Костные рычаги - х это звенья тела, подвижно соединенные в суставах под действием приложенных сил. Они служат для передачи движения и работы на расстояние.

Различают два вида рычагов: первого и второго рода. Если две силы (сила тяжести и сила тяги мышц) приложены по разные стороны от точки опоры рычага и действуют в одном направлении, то тело является рычагом первого рода. Этот рычаг двуплечий, т.к. плечо силы тяжести и силы тяги мышц расположены по обе стороны от точки опоры, образуя соответственно два равных плеча. Такой рычаг является рычагом равновесия.

Примером рычага первого рода является соединение позвоночника с черепом, т.е. атлантозатылочный сустав. Его еще называют суставом равновесия, так как сила тяжести черепа уравновешивается силой тяги мышц затылка (рис.3).

Но не обычных, которые используются в промышленности, а специальных - медицинских. К медицинским динамометрам относят кистевой, также называемый ручным, динамометр и становой динамометр. В данной статье мы расскажем, как же проводят измерения при помощи данных приборов.

Итак, начнем с кистевого динамометра. Данный прибор предназначается для определения сжимающей силы мышц сгибающих пальцы обоих рук человека, а также для диагностики состояния и функции рук, как здоровых людей, так и восстанавливающихся после травм. Динамометр кистевой используется врачами, которые занимаются физиотерапией, кроме того, динамометр применяется в правоохранительных органах, вооруженных силах и МЧС. Приборы для измерения силы незаменимы для подготовки профессиональных спортсменов. В качестве примера кистевого динамометра можно привести такие приборы, как: механический ДК и электронный ДМЭР.

Динамометр кистевой ДК.

Для проведения измерений изометрической силы с использованием динамометра не требуется много времени, к тому же процесс замера не утомляет испытуемого. Для получения точных абсолютных результатов необходимо, чтобы пациент соблюдал определенное положение тела и угол отдельных суставов. Пусть обследуемый человек вытянет руку с кистевым динамометром и отведет её в сторону перпендикулярно туловищу. Свободная рука, при этом, должна быть расслаблена и опущена вниз. После чего, по команде, он должен будет сжать динамометр кистевой так сильно, как только сможет. Динамометрическое измерение может проходить поочередно обеими руками несколько раз, при этом, выбирается лучший результат для каждой руки.

Делать выводы на основании абсолютных результатов проведенных измерений можно только в динамике, когда предыдущие результаты были занесены в специальный дневник. В противном случае, поскольку на результаты измерений, проведенных с использованием динамометра, оказывают влияние такие факторы, как возраст, пол испытуемого, а также рост и вес, следует использовать более объективные показатели. Самым объективным показателем силы будет являться так называемая, относительная величина мышечной силы. Это связано, помимо перечисленных факторов, с тем, что в ходе тренировок, рост абсолютных показателей силы тесно связан с ростом мышечной массы человека, и как следствие с его весом.

Чтобы определить величину относительной силы кисти, нужно абсолютные показания в килограммах, полученные измерением ручным динамометром, умножить на 100 и разделить на вес тела спортсмена. Для мужчин, не занимающихся спортом, этот показатель должен составлять 60-70, а для женщин 45-50.

Становая динамометрия, проводимая с использованием станового динамометра, это, можно сказать, комплексное измерение силовых качеств спортсмена, поскольку в таком исследовании участвуют практически все основные мышцы. Упражнение становой тяги с использованием динамометра должно применяться во всех учреждения диспансерного типа спортивно-оздоровительного профиля. В качестве примера станового динамометра можно привести ДС-200 и ДС-500.

Динамометр Становой ДС-200

Становая динамометрия подразумевает использование станового динамометра - прибора, который по виду напоминает обычный ножной эспандер, который состоит из рукояти, подножки, подкладываемой под ноги, троса и измерительного прибора с датчиком и отсчитывающим устройством. Испытуемый должен потянуть рукоять на себя и вверх так сильно, как только сможет, при этом, ноги должны быть прямыми в коленях.

Относительная величина становой силы рассчитывается точно так же, как и в ручной динамометрии, однако, здесь показатели индекса должны быть в разы больше. Например:

Если индекс менее 170 - то индекс относительной величины становой силы низкий.

  • От 170 до 200 - ниже среднего.
  • 200 - 230 - средний.
  • 230 - 260 - выше среднего.
  • Если же более 260 - то считается высоким.

Увеличение относительных показателей силы, как ручной, так и становой, как правило, говорит о повышении мышечной силы, а, следовательно, об увеличении мышечной массы в процентном соотношении.

Показания таких измерений используются в неврологии при обследовании заболеваний, которые могут сопровождаться мышечной слабостью, например, миастения, рассеянный склероз со слабостью конечностей, а также, различные последствия инсульта.

Отдельно следует выделить такой вид исследования, как динамография, при котором показатели силы и скорости сокращения мышц записываются на графике. Как видно из названия, суть этого метода состоит в том, что показания записываются в графическом виде в динамике (во времени). Часто, динамография связана с какими либо упражнениями или обстоятельствами, эффективность которых необходимо измерить.

У детей, также существуют усредненные показатели динамометрии, которые принято считать нормой. Усредненные величины различаются в зависимости от пола, роста, возрастной категории испытуемого. Измерения силы кисти правой руки и становой силы, обычно, проводят для детей в возрасте от восьми до 18 лет в два этапа, с небольшим перерывом для отдыха. Так, нормы показателей силы кисти правой руки для мальчиков составляют:

  • От 13 до 18,5 кг - для возраста 8-11 лет.
  • 21,6 - 37,6 кг - 12-15 лет.
  • 45,9 - 51 кг - 16-19 лет.

Для девочек, норма колеблется в пределах:

  • 9,8 - 17,1 кг - для возраста 8-11 лет.
  • 19,9 - 28,3 кг - 12-15 лет.
  • 31,3 - 33,8 кг - 16-19 лет.

Завершая статью, скажем только что динамометрия - это важный элемент антропометрии, который нашел свое применение в физиологии, спортивной медицине, гигиене спорта. Благодаря показателям абсолютной и относительной величины силы производится оценка степени физического развития человека.

Для исследования мышечной силы используются специальные приемы, при которых нагрузка падает только на отдельные мышцы и группы мышц. Исследуемого просят выполнить определенные движения в условиях сопротивления, о чем говорилось выше, либо наоборот - исследуемый оказывает сопротивление активным действиям врача. Там, где это возможно, обязательно сопоставляются симметричные группы мышц.
Исследование мышечной силы не проводится при локальном воспалении мышц, фасций, сухожилий, их разрыве, при ушибе, наличии гематомы.

В клинической практике мышечную силу условно подразделяют на 5 градаций:
1 - мышечная сила нормальная;
2 - мышечная сила снижена;
3 - мышечная сила резко снижена;
4 - напряжение мышцы совершается без двигательного эффекта;
5 - мышца парализована.

М. Доэрти, Д. Доэрти (1993 г.) приводят классификацию клинической оценки силы мышц, предложенную Медицинским исследовательским Советом.
Можно пользоваться упрощенным подразделением мышечной силы на нормальную, ослабленную (сниженную), ее отсутствие.

Некоторые приемы исследования мышечной силы в условиях сопротивления были приведены при описании исследования двигательной функции мышц. Приводим другие.
Определение силы мышц плечевого пояса . Исследуемый, согнув руки в локтевых суставах, поднимает их до уровня плеч и удерживает в таком положении. Врач, положив руки на локтевые суставы сверху, оказывает давление вниз. По степени сопротивления оценивается сила мышц плечевого пояса.

Определение силы мышц, сгибающих предплечье . Исследуемый сгибает руку в локтевом суставе и удерживает ее в таком положении. Врач делает попытку разогнуть ее, упершись одной рукой в плечо, другой захватив руку на уровне лучезапястного сустава.

Определение силы мышц, разгибающих предплечье в локтевом суставе . Рука исследуемого максимально согнута в локтевом суставе. Врач одной рукой удерживает его за плечо, другой, захватив за предплечье на уровне лучезапястного сустава, оказывает сопротивление исследуемому при разгибании руки в локтевом суставе.

Определение силы сгибателей и разгибателей кисти . Врач одной рукой фиксирует предплечье исследуемого на уровне дистальной трети предплечья, другой рукой фиксирует его ладонь (кулак), препятствуя сгибанию, а потом разгибанию кисти в лучезапястном суставе.

Определение силы мышц кисти . Врач попеременно или одновременно вкладывает указательный и средний пальцы в кисть исследуемого и просит их сжать. По степени сжатия оценивается сила сгибателей пальцев. Определение силы сгибателей бедра. Исследуемый лежит с вытянутыми ногами. Врач, положив руку на коленную чашечку или чуть выше, и, зафиксировав коленный сустав, предлагает ему согнуть ногу. По Величине усилия, приложенного к удержанию ноги в вытянутом положении, оценивается сила.

Определение силы сгибателей и разгибателей стопы . Исследуемый лежит на спине со стопами, свисающими над краем кушетки. Врач одной рукой фиксирует голень, другой, захватив стопу в дистальном отделе, оказывает Сопротивление при ее сгибании и разгибании в голеностопном суставе.

Определение силы мышц сгибающих и разгибающих пальцы стопы . Врач фиксирует пальцы стопы их поперечным захватом между большим и указательным пальцами и просит исследуемого выполнить сгибание и разгибание пальцев.